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Abstract. Expressions for the stored energy, energy power, power dissipated and the 
velocity of energy propagation are derived for wave pulses with slowly varying amplitudes. 
The results are expressed in terms of the dispersion function D(w, k ,  A )  which is assumed to 
be an explicit function of the dissipational parameter A. It is shown that in the case of 
resonant pulse propagation through a non-inverted atomic medium the energy velocity is 
always less than the free space velocity of light c. It is also shown, using the expression for 
the dissipated power in an atomic medium, that the asymmetric absorption of energy of the 
pulse results in a motion of the pulse maximum at a velocity greater than c. 

1. Introduction 

Expressions for the stored energy, energy flow and the velocity of energy propagation 
are of basic interest in the analysis of wave motion. 

For propagation of wave pulses through a non-absorbing but strongly dispersive 
medium these quantities can be obtained from a Lagrangian density (cf Anderson and 
Askne 1972,1974) including correction terms associated with the dispersive properties 
of the medium as well as with the variation of the slowly varying amplitude. 

For an absorbing medium, on the other hand, difficulties arise in attempting to 
separate the energy components and to derive the energy expressions as well as the 
energy velocity. In the case of propagation of quasi-monochromatic waves in a specific 
medium, energy expressions are easily calculated starting from Maxwell’s equations 
(see, for example, Brillouin 1960, Loudon 1970). However, for wave pulses with slowly 
varying amplitudes it is difficult to determine the evolution of the pulse envelope and to 
solve Maxwell’s equations. Frequently used expressions for the stored energy and the 
energy flow are based on an assumption of small losses (d Ginzburg 1964). The 
derivation of the energy expressions corresponding to propagation of quasi- 
monochromatic waves in the presence of absorption and temporal dispersion is 
presented in Askne and Lind (1970), where the analysis is not restricted to media with 
small losses. 

The aim of the present paper is to derive the generalized energy expressions for 
waves with slowly varying amplitudes in an absorptive and strongly dispersive medium, 
which include higher-order correction terms that are essential when the medium is 
absorptive and strongly dispersive and the variation of the slowly varying amplitude no 
longer can be neglected. The resulting stored energy, energy flow, and power dissipated 
are expressed in terms of the dispersion function D, which is an explicit function of the 
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dissipational parameter A. The analysis is restricted to an isotropic, homogeneous, 
linear and reciprocal medium. However, the medium can be temporally as well as 
spatially dispersive. Specifying the results for a Gaussian pulse, we obtain the velocity 
of energy propagation vE defined as the rate of change of the ‘temporal centre’ of energy 
flow. It will also be shown that the second-order generalized energy velocity includes 
the second-order expressions for the ‘temporal’ pulse velocity of propagation of a 
Gaussian pulse in an absorbing medium (cf Anderson er a1 1975), and the velocity of the 
moment of inertia for the case of a non-absorbing medium (cf Anderson and Askne 
1974). Application to a non-inverted atomic medium shows that the energy velocity is 
always less than the free-space velocity of light c. Finally, we will use the expression for 
the power dissipated to show that the asymmetric absorption of energy results in a 
forward motion of the centre of energy of the pulse so that the maximum of the pulse 
envelope can move with speed greater than c. 

2. Energy expressions for slowly varying waves in an absorbing medium 

We will show that it is possible to derive generalized energy expressions from the 
dispersion function if this is an explicit function of the dissipational parameter A. In 
order to avoid unneccesary complications we will specialize to an isotropic medium. We 
assume further a linear, homogeneous, dispersive and one-dimensional wave problem 
characterized by the following matrix equation: 

A -, -, A E(t, X )  =Js((t,  x ) .  t r  aax 1 
x and f denote space and time coordinates, A is a linear matrix operator, and E and P 
are vectors specifying the wave fields and the external driving fields respectively. If we 
have one external field only, a ‘current’ density J” (f, x ) ,  we can Fourier transform 
equation (1) into the scalar form (cf Askne 1972) 

where D(o, k, A )  is the dispersion function, E(o, k) and S ( w ,  k) are the transforms of a 
fundamental wave field E(t, x )  and the current density f ( t ,  x ) .  E ( f ,  x )  is chosen such 
that the product -E(f, x ) f ( f ,  x )  constitutes the power (per volume element) delivered 
by the external source. For a full account of these matters see Askne (1972). Notations 
and terminology are chosen with a possible application to the electromagnetic waves in 
mind. However, this is not essential to the analysis, e.g. in a mechanical wave problem 
the corresponding quantities would have been the velocity field and the force density. 

In order to obtain energy expressions we restrict ourselves to media with moderate 
absorption, i.e. the real part of the wavenumber kre is one order of magnitude larger 
than the imaginary part of the wavenumber ki,, which is true in most cases of practical 
interest. Assuming the waves with slowly varying amplitudes 

where Eo(f ,  x )  and $,(t, x )  are slowly varying amplitudes compared to exp[j(wot - 
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korex)],  the relation (2) can be written as (cf Askne 1972) 

where D(w0- j(a/at), kOre + j ( a / a x ) ,  A )  can be interpreted as a dispersion operator given 
by a Taylor expansion around W O  and ko,,. 

The energy components are assumed to satisfy the energy conservation law 

where W is the averaged stored energy, S the averaged energy flow, Pd the averaged 
power dissipated, and P, the averaged power delivered by the external source. The 
main problem is to separate the energy components. We will now consider some cases 
when it is possible to derive expressions for Pd and Ps which together with ( 5 )  yield 
expressions for W and S.  

2.1. The power dissipated 

In order to separate the energy components we need an expression for the power 
dissipated which can be derived from the dispersion function D if this is a known 
rational function of the loss parameter A (cf Askne and Lind 1970). In a model 
description of a medium the dissipation is often characterized by a damping ‘frictional’ 
force associated with an oscillatory velocity. The latter is denoted by 
vo(t, x )  exp[j(wot- korex)].  The frictional force may be assumed to be proportional to 
the velocity, i.e. Avo(t, x) exp[j(wot- ko,,x)], where A is frequency and wavelength 
independent. If the dissipation is obtained in a part of the system with no relative 
motion to the reference system we can write 

(6)  p -1 
d - dvo*(t ,  x)uo(t, X), 

where the asterisk denotes complex conjugate. The system can then be considered as 
a coupling between two subsystems, one described by E and the other described by U .  

Assuming linear relations between E and U ,  we have for a coupled system (Askne 1972) 

(7) 
Daa(O, ~ ) E ( w  k )  +Dab(@, k)u(a ,  k )  = j f b ,  k ) ,  

Dba(W, k)E(U,  k)+Dbb(W, k, A)v(W k)=-jF(W k ) ,  

where we have introduced a fictitious force F i n  order to define the signs of D a b  and D b a  

by the fact that the power delivered to the system is Re U ReF. 
Elimination of U yields ( F  = 0) 

D(w, k,  A)E(o, k ) =  (Daa--)E(o. k ) ,  
D b b  

As the dissipation is described by a damping force Au, A is included in D b b  only as - jh. 
From (8) we obtain (Askne and Lind 1970) 
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Since the system is reciprocal we have Dab = i Dba (cf Askne 1972) yielding 

A 2  = f j(aD/aA). (10) 

The sign of A' is determined from an analysis for large w and k, when we know that A* 
takes the form (jw)'"(-jk> B , where B is real. As long as we need A*A the sign is 
unimportant. For more illustration of the assumed model of the system see appendix 2 
and Askne and Lind (1970). 

Assuming the waves with slowly varying amplitudes, equation (86) can be written 
as a Taylor expansion around wo and ko,,. 

2m 2 

Using now (6) together with (1 1) we obtain the expression for the dissipated power as 

In the case of quasi-monochromatic waves we obtain the results given in Askne and 
Lind (1970). 

2.2. The power delivered 

The power delivered by the external source is defined by 

1 
2 

Ps(r, x) = --Re(G(t, x)Eo*(t, x)). 

If we multiply (4) and its complex transpose with Eg(r, x) and Eo(& x) respectively and 
subtract the results, we obtain according to (13) 

+m 

f l=O 
Pdt, x) = c m t ,  x), 

2.3. The stored energy and energy flow 

We assume 
+m 

n=O n=O 
w(r, x) = E w+)(t, x); S(t,  x) = s y t ,  x); 
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and rewrite the energy-conservation relation as 

where P$') and @'are given by (12) and (14) respectively. We note from (12) and (14) 
that the right-hand side of (16) is symmetrical with respect to the derivatives a / a o ,  a/at 
and a/ak, a/ax and is invariant for changing w, k ,  t and x to -k,  -0, x and t (or w, k ,  t and 
x to k ,  w, -x, - t )  respectively. Consequently, the left-hand side must also be invariant 
under the same transformations. From the fact that &"-I) and S("-l) include the 
derivatives a"/aw"-"ak" and a"-'/af"-"-'ax"(m = 1 , 2 . .  . n ) ,  the following sym- 
metry conditions can be written: 

(i) U/("-') can be obtained from S("-')  and inversely by changing 0, k ,  t and x to - k ,  
-U, x and t respectively. 

(ii) Ul(n-') can be obtained from (-l)"S("-') and inversely by changing w, k ,  t and x 
to k ,  U, x and t respectively. 

It is obvious that both conditions are equivalent. This consideration is connected 
with the 'temporal' and 'spatial' pictures of pulse propagation in dispersive and 
absorptive media (cf Anderson et al 1975). 

Appendix 1 shows how the symmetry conditions together with (8) and (12)-(16) 
leads to the first-order expressions for the stored energy and the energy flow. The mean 
stored energy is found to be 

with 
W ( t ,  x )  = W'O'(t, x) + w("( t, x )  + . . . 

W('' = 4 1 Re(- aD + 2jAA* -) aA E:EO, 
aw aw 

1 a 2 0  a2A ,aEo 1 d2D w"' = -- j (7 + 2jhA * 2) Eo - + - j [ - 
at 8 awak 

aA*aA aE, 
aw ak ao ak ax 

8 aw 

+ 2jAA*=+ 2A Im( - -)]E:---+ CC 

(where cc stands for complex conjugate) and the mean energy flow becomes 

S(t ,  x)  = S'O'(t, x )  + s y t ,  x )  + . . . 
with 

The above energy expressions are general for an absorptive and strongly dispersive 
medium described by a dispersion function D = D(w,  k ,  A ) ,  and can be extended to 
second or higher orders. The higher-order derivatives of the envelope function of the 
wave as well as of the characteristic dispersion function should be important for strong 
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dispersion and/or broad-band signals. If we assume quasi-monochromatic waves and 
consider the case without spatial dispersion, i.e., Dab, and D b b  are wavelength 
independent, we can obtain from (17)-(18) the results in Askne and Lind (1970). 

In the case of a non-absorbing medium we can put A = 0 into our energy expressions 
and get the results in Anderson and Askne (1972). 

3. Transport velocity of energy density in an absorbing medium 

The energy velocity of monochromatic waves may be defined for linear systems as the 
ratio of the averages of energy flow to stored energy (cf Brillouin 1960, Loudon 1970). 
However, for wave pulses the definition of energy velocity must be related to the choice 
of the initial pulse form. We will define the energy velocity as a quantity representing 
the rate of change of the ‘centre of pulse energy’. If the initial pulse form is Eo(& 0) and 
we write the dispersion relation k = k ( w ) ,  it is correct to calculate the ‘temporal’ energy 
velocity, i.e. the rate of change of the ‘temporal centre of gravity’ of the energy flow. 
However, if the initial pulse form is Eo(O, x), and the dispersion relation is written as 
w = w ( k ) ,  it is natural to work with the ‘spatial’ energy velocity, i.e. the rate of change of 
the ‘spatial centre of gravity’ of the stored energy (cf Anderson and Askne 1974). This 
is connected with definitions of the ‘temporal’ or ‘spatial’ velocity of the pulse maximum 
(cf Anderson et a f  1975). However, we will consider here only the ‘temporal’ energy 
velocity defined by 

We see that this velocity describes the motion of the ‘temporal centre of gravity’ of the 
energy flow and it tells at least part of the story of the flow of the energy. Thus, we have 
a velocity analogous to the centre of mass velocity of dynamics. 

In accordance with the analysis given in 0 2 the expressions for the averaged stored 
energy W and the averaged energy flow S are derived in such a way that the quantity 
(P,-P,) is considered as a driving power for the system. Assuming that the energy 
velocity is independent of this driving power, it follows from (15) and (16) that equation 
(19) reduces to 

The dispersion function describing the wave system is written as 

D(0,  k ,  A ) =  -d (w,  k, A ) ( k  -k, ,(w, A)-jk, ,(w, A)),  (21) 

where we assume that the wave packet is not affected by the other modes, i.e. the 
variation of the factor d(w,  k,  A )  may be neglected. We assume also that ki,(oo, A )  is 
one order smaller than k,,(wo, A )  and that Re d is one order of magnitude larger than 
Im d. We now introduce the ordering parameter E and write 

( W ;  S )  = y E ” (  IF; S‘”’) 
n=O 

+W 

Eo= 1 Enen, 
n = O  
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The evolution of slowly varying wave packets in absorptive and strongly dispersive 
media can be studied by a recursive method (cf Anderson et a1 1975), i.e. a system of 
coupled first-order differential equations for successive approximations is derived and 
solved recursively. The amplitudes e, ( n  = 0, 1 , . .) in (21 )  are found to be (Anderson et 
a1 1975) 

e&, X) = exp(kim(wo)x>f(5>, 

where f is an arbitrary function which satisfies the initial condition Eo(t, 0) = f ( t )  and 
5 = t - x(akre/aw),, If we choose the input pulse with a Gaussian envelope 

Eo(t, 0) =f(t) = A  exp(- bt’), (24)  

and extend the energy expressions (17 )  and (18) to second order, we obtain from (20)- 
(23)  the second-order expression for the ‘temporal’ energy velocity: 

with 

According to the recursive method, expression ( 2 5 ~ )  is valid for limited distances 

It is interesting to note that the energy velocity given by (25)  depends not only on the 
parameters of the medium but also on the length of the propagation path, as well as on 
the width of the pulse. It appears from ( 2 5 a )  that the x dependence is connected with 
the second-order dispersive and absorptive effects. As the distance x increases, the 
change in the fine-structure frequency (i.e. the spectrum of the pulse) causes a variation 
in the velocity vE. In fact, each spectral interval (U, o +dw) is associated with its own 
energy velocity which differs in each interval (x, x +dx). Thus, we can define the 
‘temporal’ energy velocity averaged over a distance from the origin x = 0 up to the point 
x, which is equal to (25) .  We note also that equation (25)  includes the following 
relations. 

(a) By assuming monochromatic waves, b = 0, equation (25 )  is reduced to 

E=(%) 1 +hC, 
W O  

i.e. the energy velocity is equal to the classical group velocity complemented by the 
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correction term proportional to the dissipational parameter A. A property of the energy 
velocity which is required by the theory of relativity is that it should be smaller than the 
free-space velocity of light c at all frequencies wo. It is not immediately obvious from 
(26) that uE has this property. The property can be verified, however, for a given 
dispersion relation k = k(w,  A )  describing an absorbing medium (see 0 3). It can be 
shown that in the case of wave propagation through an absorbing dielectric for 
frequencies near the resonance frequency, the expression (27) leads to the result 
obtained by Loudon (1970). 

(b) The second-order expression for the ‘temporal’ velocity of propagation of a 
Gaussian pulse through an absorbing medium is given by (cf Anderson et a1 1975) 

i.e. the velocity of the temporal maximum of the envelope function at a given 
distance. If we neglect in (25) the correction terms proportional to A and assume 
(a2kr,/aW2),+ 0, we obtain the expression (28). This shows that the energy velocity in 
an absorbing medium always differs from the velocity of the pulse maximum. The 
difference depends on the correction term AC. 

(c) In the case of a non-absorbing medium, A = 0 and ki,(wo) = 0, the relation (25) 
yields the second-order velocity of inertia introduced in Anderson and Askne (1974). 

4. Pulse velocity and energy velocity in an atomic medium 

Let us now consider an atomic medium described by the dispersion relation 

where w ;  = Ne2/mEo, N is the density of electrons, R is the resonance frequency, 
A = Nm/T2 is the loss factor and T2 is the relaxation time. We assume a non-inverted 
medium (w;>O) and that the pulse centre frequency wo is equal to the atomic line 
centre frequency wo which is also equal to the atomic line centre frequency R. 

4.1. ?he ‘temporal’ pulse velocity 

From (28) we can calculate the expression for the ‘temporal’ pulse velocity, which is in 
this case equal to the group velocity (cf Anderson et a1 1975): 

which can exceed the free-space velocity of light c. However, it should be noted that 
when the pulse velocity exceeds c (i.e. when the velocity of the maximum exceeds the 
velocity of the pulse front), steepening effects eventually invalidate the assumption of 
slowly varying amplitudes. A qualitative condition is that the propagation path should 
be less than the pulse width divided by ( l / c  - l/ui2’) (see Anderson et a1 1975). A 
physical interpretation of the fact that ut may be greater than c is of basic interest in 
connection with experiments. Crisp (197 1) suggested that the asymmetric absorption 
of energy of the pulse results in a forward motion of the centre of gravity of the pulse so 
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that the pulse maximum is moving with speed greater than c. However, no signal or 
energy will propagate faster than the free-space velocity of light c. We will examine this 
idea for an atomic medium starting from the expression for the power dissipated, Pd. 
Assuming a medium without spatial dispersion we have from (12) 

where 

Eo = eo = exp(ki,(wo)x)f(t - x / v J  and vg  = (dk,,/dw)G 

see (22). The dispersion function for an atomic medium can be written as (Askne and 
Lind 1970): 

and the power dissipated becomes 

where we have assumed W O  = fl. 

determined by dlE& x ) l / d f l t M  = 0, where t M  = x / v g  and we obtain 
The temporal maximum of the envelope function IEo(t, x) l  at a given distance x is 

(34) 

The power P d  associated with the leading half of the pulse (dEo/dt > 0) is according to 
(33) less than the power dissipated in the trailing half of the pulse (dEo/dt < 0). Thus, 
more energy is absorbed from the trailing half of the pulse than from the leading half 
and this results in a motion of the pulse maximum at a velocity greater than c. 

2 2  
P d M  = { E O W ~ T ~ E O .  

4.2. The energy velocity 

Using ( 2 5 )  together with (29) and assuming that (d3k,,/dw3), is negligible, the energy 
velocity obtained is 

C 
V E  

1 + ( W ~ T ~ ) ~  ’ (35) 

which is always less than c for w ;  > 0. Thus, it seems that the terms in (25) proportional 
to the loss factor A compensate the pulse velocity (27) so that the resulting energy 
velocity is always less than c for a non-inverted medium. If we assume monochromatic 
waves and introduce the complex dielectric constant 

(36)  

where n is the index of refraction and x is the extinction coefficient, we find from (26) 
and (29) that the expression for energy velocity can be written as 

k c / o  = n - jx, & 1 / 2  = 
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which is the result obtained in Loudon (1970). However, it should be noted that for an 
inverted medium ( w i  < 0) the resulting energy velocity can be greater than the velocity 
of light or  negative as a consequence of the relation (20), where the mean stored energy 
W can be negative. 

5. Condusions 

The results obtained above expose the laws of propagation of pulses with slowly varying 
amplitudes in the presence of absorption and dispersion. The essential feature of our 
analysis is to demonstrate how energy expressions can be derived from the dispersion 
function if this is an explicit function of the dissipational parameter. The resulting 
first-order expressions for the stored energy, energy flow and dissipated power can be 
extended to include higher-order dispersive and absorptive correction terms. The 
expression for the ‘temporal’ energy velocity is obtained by using the results from the 
recursive method and is valid only for a propagation path limited by a critical value. The 
results of the present work are restricted to the case of moderate absorption but can be 
applied to wave pulses in media with temporal as well as spatial dispersion. The present 
analysis may also be of value in connection with a discussion of the signal velocity. 
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Appendix 1. Derivation of stored energy and energy flow 

A. 1. Derivation of W ‘ O ’  and S(O) 

From the relation (16) for n = 1 we have 

aW0) as(’) (1) 
- + - = P ,  - P d  

at ax 
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which can be written as 

Thus, it follows from (A. 1) that the zero-order expressions for the mean stored energy 
and the mean energy flow are 

where A = [j(aD/aA)]"*. 

A.2. Derivation of WIi and S'" 

Substituting n = 2 into (16) yields 

where P y )  and Ps2) are given by (10) and (13) respectively as 

pi21 =-A(-A*-E*-  1 d2A a2Eo d2A d2Eo A * ~ E ~ - + - - - -  a2A a2Eo aA*dAaEoaEo + 2A* -E,* - - 
4 am2 at2 awak atax ak ax2 aw am at  at 

dA* dA aE,* aEo dA* aA dE,* dEo +---- ) +cc (A.7) ao d k  at ax ak ak ax ax 

amak atax a k 2  a x 2  
d2D a2Eo +- d2D -)E,*+cc.  a2Eo 

2-- 

We assume that the expressions for w"' and S"' have such forms that wl) can be 
obtained from S(') and inversely by changing w, k, t and x to k, w,  x and t respectively. 
We rewrite (A.7) and obtain 
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1 aZEo 
8 atax 

- - j (  rl + r,) E: - + cc. 

From (8) it can be shown that 

and similarly 

We also find that 

+2jhA* - a2A awak ’ 
aA* aA 

Thus 

if 

Using 

(A.9) 

(A.lO) 

(A. 11) 

(A.12) 
a2A aA* aA 

awak aw ak 
+ 2j AA * -) + 2 A - - - j ( r , - r ;) ] = o 

aA* aA rl = -r2 = 2A I ~ ( -  aw -). ak 

A.8)-(A.13) together with (A.6), we find 

(A.13) 

a2A 
8 awak awak +I j[ + 2jAA*- 

Finally, we note that this procedure can be extended to give higher-order energy 
expressions. 
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Appendix 2. Illustration of assumed model of the medium 

In order to illustrate the assumed model of the medium we apply the analysis given in 
0 2.1 to the electromagnetic wave propagation in a cold electron plasma with collisions. 
The system is described by the Maxwell’s equations together with the force equation: 

aH 
V X  E = - / . L ~ - ,  

at 

aE 
V x H = EO- - Nev + .Is, 

at  
(A.15) 

Nm -+vu =-NeE+F,  (;; i 
where -e is the charge, m the mass and N the density of electrons, v is the collision 
frequency. S and F are the external current density and the fictitious force respectively. 
Assuming propagation in the x direction and E =YE, the Fourier transformation of 
(A. 15) yields 

( w p , $ ) E - j N e v  =If, 

j N e E + N m ( w - j v ) v =  -IF, 

which corresponds to equation (7). We identify A = Nmv and obtain ( F =  0): 

(A.’l6) 

(A.17) 

where w i = N e 2 / m s o .  According to (14), (17) and (18) the zero-order averaged 
expressions for dissipated power, stored energy and energy flow are respectively 

W ‘ ” = - ( E ~ +  1 W ’ E O  2 p  2 + 7 ) E o * E ~ ,  k:e 
4 w + v  @/.Lo 

(A.18) 

which would be expected by physical arguments. Finally, we note that the higher-order 
energy expressions can be calculated easily from (14), (17) and (18) together with 
(A.17). For more examples in these matters see Askne and Lind (1970). 
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